当前位置:首页> 推荐文章

基于卷积神经网络的柴油机DPF状态辨识研究

程德新,赵树恩,张 军,王欣伟,胡超超

发布时间:2023/10/30    浏览量:

下载PDF

摘 要:针对柴油机颗粒捕集器功能失效的问题,应用GT-SUITE软件对柴油机颗粒捕集器进行仿真分析,研究颗粒捕集器温度、压降和碳烟浓度等与其状态的关联关系,并采用一维卷积神经网络对颗粒捕集器状态特征“自学习”,提高颗粒捕集器状态辨识的准确度。
关键词:柴油机;颗粒捕集器;故障特征;状态辨识
中图分类号:TK421+.5     文献标志码:A     文章编号:1006-3331(2022)02-0036-05

Study on State Identification of Diesel Engine DPF Based on Convolutional Neural Network
CHENG Dexin,ZHAO Shu'en,ZHANG Jun,WANG Xinwei,HU Chaochao

Abstract: According to the failure problem of the diesel particulate filter function,the authors simulate and analyze the diesel engine DPF through GT-SUITE software and study the relationship between the DPF state with its temperature,pressure drop,and soot concentration.Then,they improve the accuracy of DPF state identification through applying the one-dimensional convolutional neural network self-learning the state features.
Key words: diesel engine; DPF; fault characteristics; state identification

引用本文
程德新,赵树恩,张 军,等.基于卷积神经网络的柴油机DPF状态辨识研究[J].客车技术与研究,2022,44(2):36-40.
CHENG Dexin,ZHAO Shu'en,ZHANG Jun,et al.Study on State Identification of Diesel Engine DPF Based on Convolutional Neural Network[J].Bus & Coach Technology and Research,2022,44(2):36-40.