一种新型纯电动客车充电配电控制系统

刘景凯,张景涛,裴崇利,韩经鲁,李明超(中通客车股份有限公司,山东聊城 252000)

摘 要:介绍业内现有电动客车充电配电控制典型形式及其优缺点,提出一种新型的充电配电控制系统,并说明该系统的架构、工作原理及优缺点。

关键词:电动客车; 充电配电; 控制系统

中图分类号: U469. 72; U463. 6

文献标志码:A

文章编号:1006-3331(2023)04-0014-04

A New Control System of Charging and Distribution Power for Pure Electric Buses

LIU Jingkai, ZHANG Jingtao, PEI Chongli, HAN Jinglu, LI Mingchao (Zhongtong Bus Holding Co., Ltd., Liaocheng 252000, China)

Abstract: The authors introduce the typical forms and their advantages and disadvantages of charging and distribution power control of electric buses existing in the industry, propose a new charging and distribution control system, and elaborate on the architecture, working principle, advantages, and disadvantages of this new system.

Key words: electric bus; charging and distribution power; control system

目前纯电动相关技术日趋成熟^[1],纯电动客车充电过程的配电控制方案有多种形式,加之海外市场为非国标充电接口,这使得电动客车充电的控制方案更加多样化^[2]。本文在分析纯电动客车现有充电配电控制方案的基础上,介绍一种新型的充电配电控制系统。该系统不仅能解决目前纯电动客车充电过程中存在的问题,还能兼容国标及非国标充电接口,保证整车用电安全,为纯电动客车充电配电控制设计提供一种思路。

1 纯电动客车充电配电控制的典型形式

纯电动客车一般都有手动机械电源开关,车辆在 无人使用时,手动机械电源开关应为断开状态,从而 将整车供电电路切断,所有部件均为断电状态,确保 用电安全可控^[3-4]。

1.1 纯电动客车充电时电器部件工作描述

根据国标要求和从安全角度考虑,纯电动客车在

充电时,远程监控终端应从车辆上采集整车及各个部件的有关数据^[5],这些数据包含车辆状态、充电状态、运行模式、车速、累计里程等^[6]。根据以上数据采集需求,充电过程中需工作的部件应有组合仪表、远程监控终端、整车控制器、集成电源、电池管理系统(BMS)等。其主要工作内容如下:组合仪表发送车速、里程等信息给 CAN 网络;远程监控终端记录并存储整车的数据;整车控制器发送整车信息(车辆状态、运行模式等)报文给 CAN 网络;集成电源带 DC/DC模块,可将高压电池高压直流电转为低压 24 V 直流电,给整车提供 24 V 电源^[7-8];BMS 发送高压电池状态报文给 CAN 网络,同时,BMS 也带小型 DC/DC 模块^[9],一般用于唤醒 BMS 及高压配电箱工作。

国标充电枪具备低压辅助充电电源^[10],高压电池与充电枪充电连接确认后,此辅助充电电源有输出。欧标充电枪不具备辅助充电电源,一般需外设充电开关,用于控制充电状态。

收稿日期:2023-02-27。

第一作者:刘景凯 (1982—),男,工程师;主要从事客车电器配电设计工作。E-mail:lcliujingkai@163.com。

目前市场上的充电配电控制技术方案繁多,各有利弊,典型的方案主要有以下2种。

1.2 方案一及其优缺点

车辆充电时,手动机械电源开关开启,钥匙处于 ON 挡,整车所有电器部件均处于工作状态,完成充电后,再由人员关闭 ON 挡及手动机械电源开关。

该方案的优点是结构简单,无需额外设置配电线路及控制模块,缺点是需要专人现场维护。因夜间电价便宜,电动客车夜间充电可节省电费,获得较大经济效益^[11]。但该方案需专人进行充电的实时监管,无法满足人性化要求,充电过程中工作部件较多,需要靠人员经常巡检来控制充电安全,无法有效规避安全隐患,一旦发生故障,难以及时发现,且有潜在风险,如在充电过程中误操作启动钥匙,可能会损坏高压接触器,从而影响整车安全。

1.3 方案二及其优缺点

该方案不需要人为操控手动电源开关及 ON 挡 开关,手动电源断开即可实现充电控制,但需配置单 独的充电模式控制模块来控制充电过程。

如图 1 所示,充电模式控制模块在收到充电信号时,通过对整车报文信息及充电信息的判断,内置 DC/DC 变换器将高压电池高压电转换为 24 V 低压电,进而输出电源唤醒充电时需要工作的部件。

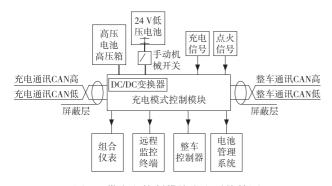


图 1 带充电控制模块充电系统简图

该方案的优点是控制方便可靠,充电后自动断开 电路,无需人工管理。缺点是需要设置单独的控制模 块及线路,整车成本增加;整个系统结构复杂,不易检 修,成本高,可靠性差,可配置性差,维修时需整体更 换模块,使用成本较高。

2 一种新型的充电配电控制系统

为解决目前技术方案多、运营维护繁琐、结构复杂、不够人性化、造价成本高等问题,本文特提出一种新型技术方案,可替代以上方案,实现更优化的控制。

2.1 新型充电控制系统架构

该新型架构(如图 2 所示)以简单实用的继电器、保险等电路构建配电控制模块,充分利用纯电动客车部件的工作特点及优势,实现配电过程中精确有效的配电管理。

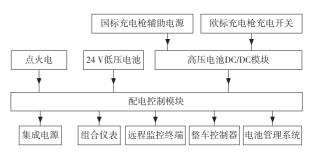


图 2 新型充电控制系统架构

该系统以配电控制模块为核心,进行充电过程中的配电控制,国标充电枪辅助电源或欧标充电枪充电开关只控制高压电池自带 DC/DC 模块,高压电池正常充电后才输出 24 V 低压电,避免充电枪辅助电源因输出电压低或功率小而无法唤醒部件问题,实现更精确的充电控制。同时结构简单明了,便于检修维护,性价比高。

2.2 新型充电控制系统工作原理

如图 3 所示,设置以上配电盒部分,DC/DC 设置在手动机械开关后;蓄电池正极设置在手动机械开关前;欧标充电开关设置在手动机械开关前,与蓄电池正极线并接;在集成电源工作电路上设置继电器 K1,在仪表工作电路上设置继电器 K2,在远程终端工作电路上设置继电器 K3,在整车控制器唤醒电路上设置继电器 K4,将点火电源与继电器 K4 连接,实现整车控制器唤醒电与点火电源的连接。

1) 纯电动客车在充电过程中,手动机械开关 S1 是处于断开状态,即低压电池与整车供电断开,保证车辆在无人值守且高压充电中,车辆其他设备不工作,降低能耗的同时,确保整车用电安全。

2) 车辆处于高压启动状态时,手动机械开关 S1 处于闭合状态,集成电源 DC/DC 给整车提供电源,同时给低压电池进行充电。此时,继电器 K1、K2、K3、K4 均为常闭触点,集成电源、仪表、远程终端、整车控制器等均可进行正常工作。

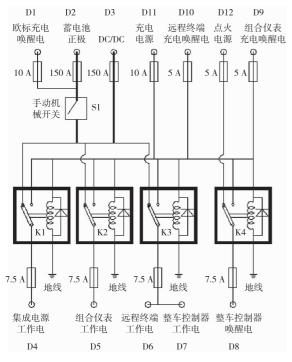


图 3 新型充电控制系统工作原理

- 3)由国标充电枪对车辆进行充电时,国标充电枪输出的辅助电源进入电池管理系统,由电池管理系统的 DC/DC 模块输出 24 V 电源给充电电源 D11 供电;欧标充电枪对车辆进行充电时,由于欧标充电枪不具备辅助电源输出功能,此时,需闭合单独设置的充电开关,由 24 V 低压电池提供电源给高压电器箱,再由电池管理系统的 DC/DC 模块输出 24 V 电源给充电电源 D11 供电。
- 4) 车辆正常充电后, K1、K2、K3 继电器吸合,由 D11 给集成电源工作电 D4、仪表工作电 D5、远程终端工作电 D6、整车控制器工作电 D7、整车控制器唤醒电 D8 供电,通过充电电源 D11 给仪表充电唤醒电 D9、远程终端充电唤醒电 D10 供电,仪表、远程终端、整车控制器的工作电和唤醒电有电,此3个部件均正常工作;集成电源的工作电 D4 有电,集成电源 DC/

DC 正常工作,可为整车提供 24 V 电源[12]。

2.3 新型充电控制系统优缺点

- 2.3.1 新型充电控制系统优点
- 1)结构简易可靠,既可集成也可单独设置在配 电盒中,通过继电器回路即可实现复杂的充电过程控 制,节省人工,安全有效,维护维修简单。
- 2)集成了国标充电、欧标充电枪充电配电控制, 形成了统一的技术路线,实现了充电过程低压配电控制系统的兼容适应性。
- 3) 规范了高压电池充电过程中各电器部件的工作状态,有效利用了各电器部件的工作性能及特点, 实现了充电状态信息的有效保存,有利于车辆安全状态的维护。
- 4) 定义了充电过程中的低压配电控制逻辑,提供了一种标准化的充电过程控制技术路线,实现了电器部件的集中精确有效控制。
- 2.3.2 新型充电控制系统缺点
- 1)无法实时判断充电过程中各部件的工作状态,需经常检查继电器及线路是否正常。
- 2) 充电过程过度依赖于高压电池自带 DC/DC 模块,若 DC/DC 模块损坏或功率输出不足,将无法正常充电。
- 3)该控制系统无自检功能,如损坏需逐个排查线路板、继电器等,耗时耗力。

3 结束语

本文提出了一种新型纯电动客车充电控制系统 方案,该方案结构简单且便于维护保养,无需增加更 多额外的成本,可根据实际需求集成或单独设置在配 电盒中,可实现与不同配电要求的匹配兼容,更大地 发挥了通用性、复合性。

参考文献:

- [1] 刘宗巍, 史天泽, 郝瀚, 等. 中国汽车技术的现状、发展需求与未来方向[J]. 汽车技术, 2017(1):1-6.
- [2] 中国电工技术学会电动车辆专业委员会. 我国电动汽车市场化进程中相关问题综述[J]. 电工电能新技术, 2015

(7):1-10.

- [3] 中华人民共和国公安部. 机动车运行安全技术条件: GB 7258—2017[S]. 北京:中国标准出版社,2017;31.
- [4] 中华人民共和国工业和信息化部. 客车机构安全要求: GB 13094—2017[S]. 北京: 中国标准出版社, 2017: 7.
- [5] 中华人民共和国工业和信息化部. 电动汽车远程服务与管理系统技术规范第1部分: 总则: GB 32960. 1—2016[S]. 北京: 中国标准出版社, 2016: 2.
- [6] 中华人民共和国工业和信息化部. 电动汽车远程服务与管理系统技术规范第3部分:通讯协议及技术格式 GB/T 32960. 3—2016[S]. 北京:中国标准出版社,2016:8.
- [7] 陈国强, 苏航, 林裕钟. 纯电动客车低压用电研究[J]. 客

车技术与研究,2018,40(6):28-30.

- [8] 林程. 电动汽车工程手册:第一卷. 纯电动汽车整车设计 [M]. 北京: 机械工业出版社,2020;523.
- [9] 尹志刚, 龙宇舟, 彭再武, 等. 电动客车电池管理系统技术 [J]. 客车技术与研究, 2021, 43(4): 29-32.
- [10] 中华人民共和国工业和信息化部. 电动汽车传导充电用连接装置 第3部分:直流充电接口: GB/T 20234.3—2015[S]. 北京:中国标准出版社,2016:2.
- [11] 徐智威,胡泽春,宋永华,等. 充电站内电动汽车有序充电 策略[J]. 电力系统自动化,2012,36(11):38-42.
- [12] 楼佳烽. 纯电动客车高压系统架构设计[J]. 客车技术与研究,2021,43(4):25-28.

欢迎刊登广告

《客车技术与研究》创刊于1979年,国内外公开发行,双月刊,国内邮发代号:78-115,国外发行代号:BM 2856,中国标准连续出版物号:ISSN 1006-3331;CN 50-1109/U。

本刊主要发行至客车及其配套件企业、科研单位和大专院校,深受广大读者的欢迎和好评。多年来,本刊在宣传和推广客车配件和设备等新产品、提高产品知名度、促进产品销售以及传播信息等方面 发挥了重要作用,已成为客车主机厂选择配套件及设备的主要参考资料。

为了使您的产品能快速赢得市场,提高企业的经济和社会效益,我们竭诚欢迎客车(汽车)及相关企业在本刊刊登广告。

详情咨询:023-62653044。